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A model for the Gibbs energy of mixing for the systems composed of water, neutral polymer and 
polyelectrolyte is established by combining the theories of Flory Huggins and Manning, and by treating 
the free counterions as complementary species. The phase behaviour of two model systems and its dependence 
on the salt concentration are studied by using the model. The basic features of the phase behaviour of the 
systems can be captured, and the calculated results are in good agreement with the experimental data. 
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INTRODUCTION 

It is often found that aqueous solutions of binary 
neutral polymer mixtures may phase-separate into two 
isotropic solutions, each enriched in one of the polymer 
components, even when the polymer concentrations are 
relatively low 1. Such 'polymer incompatibility' is due to 
the large number of segments in the polymer molecules 
and the small gain in the entropy of mixing of unlike 
polymers. The higher the molecular weights of the 
polymeric components, then the more immiscible the two 
polymers will be; similarly, the larger the difference 
between the molecular weights of the polymers, the 
more asymmetric will be the tie lines and binodal 
curves. Curve 1 in Figure 1 shows the cloud point 
curve of water/poly(ethylene glycol) (PEG)/polyacrylamide 
(PAM) mixtures 2. It can be seen that the curve is 
asymmetrical and displaced towards the low-molecular- 
weight polymer, as predicted theoretically 3. The situation 
is quite different, however, for water/neutral polymer/ 
polyelectrolyte mixtures. Such systems may form homo- 
geneous mixtures even when the polymer concentrations 
are relatively high. It is the charge density of the 
polyelectrolyte, rather than the molecular weights of the 
polymeric components, which dominates the asymmetry 
of the phase diagram. As an example, curve 2 in Figure 
1 shows the cloud point curve of water/PEG/Na salt of 
poly(acrylic acid) (PAANa) mixtures z. Although the 
molecular weight of the PAANa is much larger than 
that of the PEG, the cloud point curve of the 
water/PEG/PAANa mixtures is clearly displaced to the 
side of the PAANa, although the PAANa has a higher 
molecular weight than the PAM, the cloud point curve 
of the water/PEG/PAANa system is much higher than 
that of the water/PEG/PAM system, thus indicating that 
PAANa is more miscible with PEG in water than PAM. 
However, the high miscibility can be reduced significantly 
and the unusual asymmetry of the cloud point curves 
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can be made less pronounced by adding a small amount 
of low-molecular-weight (LMW) salt to the aqueous 
solutions of neutral and charged polymer mixtures. If 
enough salt is added, the phase behaviour will be quite 
similar to that shown by aqueous solutions of binary 
neutral polymer mixtures, and the binodal (and also the 
cloud point) curves will be displaced towards the 
low-molecular-weight polymer. 

Although thermodynamic theories for aqueous solutions 
of neutral polymer mixtures have become so sophisticated 
that the experimental data of such systems can be correlated 
within experimental accuracy, the thermodynamic study 
of aqueous solutions of polyelectrolytes is very scant 4-9. 
To our knowledge, no model has yet been shown which 
is able to describe quantitatively the phase behaviour of 
aqueous solutions of binary charged and neutral polymer 
mixtures and its dependence on the salt concentration. 
It is the objective of this work to propose an approach, 
which should be valid for both with and even without salt, 
to model the phase behaviour of such systems and its 
dependence on salt. Our approach is similar to that of 
Minh and Nose 6'7 and also that of Khokhlov and 
coworkers 8'9, in the sense that we use the Flory-Huggins 
theory and treat the free counterion as a complementary 
constituent of the system. The differences between our 
approach and those of these other workers is twofold. 
First, the electrostatic interactions are modelled by using 
Manning's theory 1°, which is believed to be more 
realistic for polyelectrolyte solutions. Secondly, we accept 
the ideas of Manning on counterion-condensation 
and suggest that only free counterions contribute 
to the enhanced miscibility, which makes this approach 
useful for both weakly charged and strongly charged 
polyelectrolyte solutions. 

THERMODYNAMIC MODEL 

Consider a mixture of a neutral polymer A of volume 
fraction ~b A, a charged polymer B of volume fraction qSa, 
and a solvent S of volume fraction 0s (0A+~bB+~bs= 1). 
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Figure 1 Phase diagram of aqueous solutions of binary polymer 
mixtures: (1) PEG (M = 36 000)/PAM (M = 110 000); (2) PEG (M = 36 000)/ 
PAANa (M= 150000). Experimental data from ref. 2 

In addition, many small ions are present in the system, 
including counterions which appear as a result of the 
dissociation of polymer B and the L M W  salt, and co-ions 
which are derived solely from the salt. In our analysis, 
the following species are defined: solvent, co-ions, free 
counterions, neutral polymer, and 'net polyions', i.e. the 
polyion together with the counterions bound to it. For 
the sake of simplicity, we assume that both the salt and 
the charged groups of polymer B are univalent (extension 
to multivalent cases is straightforward). In addition, we 
neglect the self-volume of the small co-ions and 
counterions, and we assume that all interactions involving 
the small ions are of the nature of Coulomb interactions. 
Therefore, in the framework of the Flory-Huggins lattice 
theory, the expression for the Gibbs energy of mixing 
may be written in the following form: 

AG _~3 ( N ~ l n  ~bA+ ~bB in ~bBd_q~sln t~sd_XAS~bA~bS VRT NB 

--1-ZBS ~b B ~bs "-[-ZAB ¢~A t~B)"J-~3 [Cs b3 

+ (1 -- 0)q~R'] ln[c~b 3 + (1 - 0)~B] 

--~-(1--0)2 ~ 31n[2csbz (l) 

where Zij is the interaction parameter between the i and 
j components (i, j = A, B, or S), N i is the number of 
segments in polymer i, V is the volume of the system 
(V=nt b3, where n t is the total number of lattice sites in 
the Flory model and b 3 is the characteristic spacing of 
the lattice), c~ is the molarity of the L M W  salt, ( 1 -  0) is 
the fraction of free counterions from polymer B, and 
is the charge parameter of polymer B. 

The terms contained within the first brackets are 
from the Flory-Huggins theory. The first three terms 
represent the contributions to the Gibbs energy from the 
translational motion entropies of the polymer chains and 
the solvent molecules, respectively. The next three 
terms describe the non-electrostatic interaction of the 

J. de Swaan Arons 

components. The assumption involved in these terms is 
that the segments of both charged and neutral polymers 
are distributed uniformly in the system. This assumption 
should be quite acceptable providing that the polymer 
concentration is not too low. 

The seventh term in equation (1) is the contribution 
to the Gibbs energy arising from the mixing of free 
counterions, which is simply the product of the mole 
number n and the chemical potential # of the free 
counterions, i.e. 

AGfree = nfree APfre e (2) 

Because of the high electrostatic potential around the 
polyion and possibly the presence of some short-range 
interactions, a fraction of the counterions is bound to the 
polyion. However, the L M W salt is assumed to be 
completely dissociated. Therefore, the total number of 
free counterions should be the sum of the counterions 
dissociated from the L M W  salt and those from the 
polyelectrolyte, minus the fraction of counterions that 
are bound to polyions, i.e. 

nfree=[cs+(1--O)~31V (3) 

In evaluating the chemical potential of the free counterions, 
it is assumed that all short-range interactions involving 
the free counterions may be neglected. Therefore, without 
including the long-range interactions, which will be 
discussed separately below, the chemical potential of the 
free counterions may be written as 

Al~f, ee=RTln[cs+(1-O)~3] (4) 

The last term in equation (1) is the contribution associated 
with the electrostatic free energy of interaction, AGel. 
According to Manning1 o, 11: 

AGel 
- ~ ~ba (1 - 0) 2 ln[1 - exp( -  ~:a)] ~ ~ b~ (1 - 0) 2 lnx VR T -~ 

m 

(5) 
In this equation, a is the axial charge spacing on the 
charged polymer, and the Debye screening parameter ~c, 
including all free small ions, is given by 

tc2=(4n)lO3Nav~a[2Cs+(1-O)~3] (6) 

where N,v is the Avogadro constant. Because the 
contributions from the electrostatic interactions between 
the small ions are of a higher order in x and are 
negligible when compared to those involving the 
polyions, equation (5) includes only interactions between 
the net polyion charge and its ion atmosphere, plus the 
self-energy of the net charge. The assumptions involved 
in equation (5) are as follows12: 

(i) the real polyelectrolyte can be replaced by a line of 
length L with a continuous charge distribution; 

(ii) at low ionic strengths counterion-condensation limits 
the charge density such that ~af~< l; 

(iii) the linearized Poisson-Boltzman equation adequately 
describes the behaviour of the uncondensed small 
free ions; 

(iv) the effective Debye length given in equation (6) 
adequately accounts for interactions between polyions 
in concentrated solution. 
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In equation (1), several terms that are proportional to 
4 ,  have been omitted because they do not contribute to 
the phase equilibrium calculation. 

RESULTS 

From equation (1) it is possible to find the corresponding 
equation for the spinodal curve: 

1 1 ( 1 - 0 )  2 ~ ( l  - -  0)  3 
+ - -  _ 2ZB s -+ 

48N8 4s csb3 +(1--O)4B 2esb3 + (1 -O)48  

x + - - - -  2XAs 
q 2(2c~b3 +(1 - 0)~bB)2// ~bANA 4s 

= (~-~- ZAB -- ZAS-- )(BS) 2 (7) 

The corresponding equations for the critical point can 
also be calculated by using equation (1). 

In order to calculate the binodal curve, the expressions 
for the chemical potentials of each component are needed. 
These can also be obtained from equation (1), as shown 
below: 

R T  1 2 

-[- ZBS4 2 ~t- (ZAS -I- ZBS - -  ZAB)4A 4B 
+ csb 3 ln[cs b3 + (1 - 0)~ba] 

~(1 - 0 ) 3 4 2  
--(1-0)4.-+ 

4c,b 3 + 2(1 - 0)4. 

(8) 

N A 
(/IA-- #~')b3 ~ In 4A +(1 -- NA)~S +(1  -- ~ )  48 R T  

4- NA[ZAS4 2 -4- ZAB4 2 -k- (ZAS 4- )(AB -- ZBS)4S~bB] 

+ NAC~b 3 ln[c,b 3 + (1 - 0)4B] 

¢(1 - o ? ~ .  ~ 
-- NA(1 -- 0)4~ + NA (9) 

4Cs b3 + 2(1 -- 0)4B 

( /~B- #~])b3RT =ln 4 . + ( 1 -  NB)4s + ( 1 -  N~)4A 

_~_ N B F ~ B s 4 2  _~_, 2 ZA.4A + (Z.s + ZA.-- ZAS)OS4A] 

+ Na(esb 3 + (1 - 0)) ln[c~b 3 + (1 - 0)4,] 

+ NB(1 - 0X 1 - 4a) 

- N .  ~ (1 - 0) 2 ln[2csb 3 + (1 - 0)~bB] 

- N n ~ ( l  --0) 3 4a(1 -- 4B) (10) 
2csb 3 + (1 - 0)~b a 

In this model, there are several parameters for each 
system. The pure component parameters include NA, N, ,  
and ~. The number of segments of the polymer molecules, 
NA and NB, may be calculated as the degrees of 
polymerization. The charge parameter ¢ can be simply 
determined as ~ = ~d,/l R (where ~ is the fraction of charged 
segments, In is the monomer contour length of the 
polyelectrolyte, and da is the Bjerrum length, equal to 
--~7.18A at 25°C) ~3. The pure component parameters 
that were used in our calculations are given in Table 1. 

The binary parameters in the model are the Flory 
Huggins parameters ;(AS, ZBS, and gAB, which characterize 
the short-range interactions between the different 
components. Although the change in concentration of 
the LMW salt changes the quality of the solvent and also 
the solvent-related short-range interaction parameters, it 
is believed that the influence of the salt concentration on 
gAS and ZBs is not significant. Evidently, the very weak 
dependence of ;<AS and gBs on the salt concentration 
cannot be responsible for the high sensitivity of the phase 
behaviour of such mixtures on the ionic strength. 
Therefore, these short-range interaction parameters are 
treated as being salt-independent parameters. In solutions 
with very high salt concentrations, polyelectrolytes 
behave like neutral polymers and our model then 
simplifies to the Flory-Huggins theory. Therefore, the 
value of these binary parameters can be estimated by 
fitting the Flory-Huggins theory to the cloud-point data 
of the mixtures at very high salt concentrations. The 
short-range interaction parameters of our model systems 
are given in Table 2 and will be used in calculations for 
solutions with different salt concentrations. 

Another very important parameter in our model is the 
fraction of the free counterions of the polyelectrolyte. In 
Manning's limiting law, this parameter is treated as a 
constant, which is dependent only on the charge 
density of the charged polymer. He suggests that 
( 1 - 0 ) =  1 if ~< 1, and ( 1 - 0 ) =  1/~ if ~> 1. However, for 
polyelectrolyte solutions of finite concentration, recent 
experimental results show that this parameter depends 
on many factors, including salt concentration and 
polyelectrolyte concentration. It seems to us that 
the quantitative estimation of the fraction of free 
counterions as a function of both salt and polyelectrolyte 
concentrations is still an open question. Therefore, we 
regard this parameter as being an adjusted parameter. 
Our other parameter is the lattice spacing parameter, b 3, 
which is an empirical one. Although this parameter is 
very important for modelling the salt-effect on the phase 
behaviour, it is irrelevant for modelling the phase 
behaviour of salt-free solutions. 

Figures 2 and 3 show the calculated spinodal curves, 
binodal curves and critical points which were obtained 
by using the model, together with the experimental cloud 

Table 1 Pure component parameters used in calculations 

Molecular Degree of Charge 
Polymer weight polymerization parameter 

Poly(ethylene glycol) 36000 795 
(PEG) 
Poly(vinylpyrrolidone) 160000 1441 
(PVP) 
Na salt of poly(acrylic 150000 2113 2.8 
acid) (PAANa) 
Polyacrylamide (PAM) 110000 1571 

Table 2 Estimated parameters used in calculations of the model 
systems examined in this work 

System ZAS ZBS gAB 1 -- 0 h 3 

PEG/PAANa 0.436 0.35 0.40 0.031 0.0045 
PVP/PAANa 0.40 0.35 0.5 0.031 0.004 
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Figure 2 Phase diagram of the PEG/PAANa/brine system with cloud 
points at C, =0  (O), 0.1 M (Vq) and 1.0 M (V), using experimental data 
from ref. 2. Results from this work: (1) spinodal curve at C,=0; 
(2) binodal curve at C, =0; (3) spinodal curve at Cs=0.1 M; (4) binodal 
curve at C~ = 0.1 M; (5) spinodal curve at C, = 1.0 M; (0 )  critical points 
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Figure 3 Phase diagram of the PVP/PAANa/brine system, with cloud 
points at Cs=0 (O), 0.1M ([]), 0.2M (~)  and 1.0M (A), using 
experimental data from ref. 2. Results from this work: (1) spinodal curve 
at C~=0; (2) binodal curve at C~=0; (3) spinodal curve at C~=0.1 M; 
(4) binodal curve at Cs=0.1 M; (5) spinodal curve at Cs=0.2M; 
(6) spinodal curve at C, = 1.0 M; (0 )  critical points 

points, for two model systems. In spite of polydispersity 
in the molecular weights of the polymers, the two model 
systems are assumed to be strictly ternary mixtures 
composed of a neutral polymer A, a charged polymer B, 
and solvent, together with LMW salt. The values of the 

fraction of the free counterions and those of the lattice 
spacing parameters used in the calculations are also listed 
in Table 2. It can be seen from the two figures that the 
calculated results fit the experimental data reasonably 
well. This model can encompass all of the basic features 
of the phase behaviour of aqueous solutions of binary 
charged and neutral polymer mixtures. In salt-free 
solutions, the miscibility between the neutral polymer 
and the polyelectrolyte is very high and the asymmetry 
of the binodal curve is unusual, because it is displaced 
to the side of the high-molecular-weight polymer. By 
adding a small amount of salt to the system, the very 
high miscibility can be reduced significantly and the 
unusual asymmetry of the binodal curve can be made 
less pronounced. 

CONCLUSION 

An expression for the Gibbs energy of mixing for aqueous 
solutions of charged and neutral polymer mixtures is 
established by combining the theories of Flory-Huggins 
and Manning, and by treating the free counterion as a 
complementary component. This model should be valid 
for polyelectrolyte solutions, with or even without salt, 
when the concentrations are not very low. Although the 
model may be very crude, as a result of the fact that all 
short-range interactions involving small ions and the 
long-range interactions between small ions have been 
neglected, all of the basic features of the phase behaviour 
of such systems can be captured by using the model. The 
spinodal and binodal curves, and the critical points of 
two model systems at different salt concentrations have 
been calculated by using the model. The calculated 
binodal curves fit the experimental cloud point data quite 
well, and the salt-effect on the phase behaviour can also 
be accounted for. 
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